Floating Point Numbers

· Floating point representation is used to represent real numbers (i.e. numbers with fractions)

· Floating point representation supports huge range with reasonable storage size

· Examples: 32-bit storage size can represent a number

· As large as 1045
· As small as 10-45
· Floating point representation suffers from the following main disadvantages:

· Potential loss of precision due to limited number of significant digits

· Relatively, large storage requirements

· Slow calculations

· This chapters covers:

· Review of exponential notation 

· Floating point representation in computers

· Floating point calculations

· IEEE 745 floating point standard

· Packed Decimal Format (BCD)

· Overflow and Underflow Conditions



Review of Exponential Notation

· Exponential notation or scientific notation is a conventional method for representing floating point numbers

· Exponential notation format consist of 6 components 

· Mantissa 

· Sign of the mantissa

· Exponent

· Sign of the exponent 

· Base of the exponent

· Location of the fraction point

Example: -50.5 x 10-20 
· Fraction point position is flexible and can be adjusted without changing the number magnitude 

· Changes to the fraction point requires adjustment to the exponent

· For every move to the right, the exponent must be decremented

· For every move to the left, the exponent must be incremented

Examples

The number -50.5 x 10-20 can be represented as
-505. x 10-21 

-.505 x 10-18
-.000505 x 10-15
· However shifting should not be arbitrary, since that may affect the precision of the number

· If we limit the mantissa to 5 digits, the last representation results in lose of 1 precision point (i.e. error)



Floating Point Representation in Computers

· Computers uses a representation method very similar to the exponential notation

· Binary is used instead of decimal

· Storage size of 32, 64, and 128 bits are typically used

· See Figure 5.4 in page 132 for a typical 32-bits floating point format

· Leftmost bit is the mantissa sign

· Followed by 8 bits exponent

· Followed by 23 bits mantissa

· The fraction point is implied to be at the beginning of the mantissa

· Exponent is stored in excess-128 notation 

· Base of the exponent is implied as base 2

· Computers uses many different proprietary and standard Floating Point representation methods

· The following standards are in common use and will be studied later in the chapter

· IEEE 754 Floating Point representation standard

Floating Point Representation Review

· Assume the following decimal floating point format: SMMMMMMM


(S = mantissa sign, M = mantissa, decimal point is implied at the end)

· The above format provides a range of: ±9999999
· Let’s introduce 2 exponent (EE) digits in place of 2 mantissa digits: SSEEMMMM  (second S is the exponent sign)

· The above format provides a range of:  ± 0001 x 10-99 to ± 9999 x 1099
· With this representation we have traded off 2 digits of precision to increase the range 

· There exist a trade off between Precision and Range
· The more digits assigned for the mantissa, the higher the precision and lower the range 

· The more digits assigned for the exponent the higher the range and lower the precision

· Floating point formats has the following attributes 

· A number is assigned a storage space (i.e. fixed number of bits)

· The storage space is divided into 4 parts

· Mantissa sign

· Mantissa

· Exponent sign

· Exponent

· The following remaining parts are implied and hence do not need to be stored

· Exponent base 

· Fraction point position

· There are a number of trade-offs that need to be considered when designing a floating point format:

· Storage size

· Increase precision and range 
· But also increase storage requirements
· Base of the exponent 

· Binary base provide low range capability but requires simple calculations

· Higher base (e.g. hex) provide high range but results in more complex calculations

· Location of binary point 

· Usually positioned at the beginning of number to provide maximum precision

· Number of bits to use for the exponent 

· The higher the number, the higher the range and lower the precision and visa versa

· Number of bits to use for the mantissa 

· The higher the number, the higher the precision and lower the range and visa versa

· Method to handle the sign for the exponent 

· Sign free representation is required 

· 2’s complement can be used but excess-N is more common

· Method to handle the sign for the mantissa 

· Sign free representation is not required 

· Sign-and-magnitude is typically used

· 2’s complement can also be used but less common

Example Floating Point Format

· SEEMMMMM format 

· Excess-50

· Base 10 exponent 

· Base 10 mantissa

· Implied decimal point at the beginning of the number

· This format provides a range as small as: ± .00001 x 10-50 and as large as: ± .99999 x 10+49
Excess-N 
· One important consideration in floating point is

· How to handle the sign of the exponent

· 2’s complement is an obvious solution

· However, the Excess-N method is more commonly used 

· N is a predefined value separating the positive range from the negative one

· Value ≥ N is positive

· Value< N is negative

· See Figure 5.1 in page 125 for Excess-50 representation

· Excess-N provides the following important advantages over 2’s complement

· Simpler in calculation

· More flexible as N can be adjusted to adjust the range of positives and negatives  

· The smaller the N the larger the positive range and the smaller the negative range

· The larger the N the smaller the positive range and the larger the negative range

Conversion from Excess–N to Sign-and-Magnitude

· Subtract exponent from N

Examples

1. Convert 30 represented in Excess-50 to sign-and-magnitude representation 

= 30 – 50 = -20

2. Convert 60 represented in Excess-50 to sign-and-magnitude representation

= 60– 50 = 10

Conversion from Sign-and-Magnitude Notation to Excess–N

· Add N to the exponent

Examples

1. Convert –10 represented in sign-and-magnitude to Excess-50 

= 50 + (–10) = 40

2. Convert 0 represented in sign-and-magnitude to Excess-50 

= 50 + 0  = 50

Normalization and Formatting of Floating Point Numbers

· Normalization is the process of eliminating leading zeros from the mantissa

· The objective of normalization is to maximize precision given the number of digits limitation 

· Normalization can only be performed if the exponent has enough range

Examples

1. Normalize .0003 x 1020
= .3 x 1017
2. Normalize .0003 x 10-20
= .3 x 10-23
3. Normalize .0003 x 10-98 assuming 2 exponent digits 

· Cannot be normalized as there is no enough range in the exponent 

Converting from real number to Floating Point format
· The following steps provide the method to convert an integer or real number to floating point format:

1. Convert the number to exponential notation format

2. Place the fraction point to its proper position

3. Normalize the number

4. Convert exponent from sign-and-magnitude to Excess-N

5. Store the number in the floating point format

Examples

Given the following floating point format

· SEEMMMMM format 

· Use 0 for positive and 5 for negative

· Excess-50

· Base 10 exponent 

· Base 10 mantissa

· Implied decimal point at the beginning of the mantissa

· Convert 246.8035 into the above floating point format

1. Convert to exponent notation format 
= 246.8035 x 100
2. Set decimal point to proper position
= .2468035 x 103
3. Normalize 


already normalized

4. Convert exponent to Excess-N
= 50 + 3 = 53

5. Store in floating point format
= 05324680

· Convert – .00000075 into the above floating point format

1. Convert to exponent notation format 
= .00000075 x 100
2. Set decimal point to proper position   already in proper position

3. Normalize 


= .75 x 10-6 

4.  Convert exponent to Excess-N
= 50 + (-6) = 44

5.  Store in floating point format
= 54475000

· Convert 1255 x 10-3 into the above floating point format

1. Convert to exponent notation format   = 1255. x 10-3
2. Set decimal point to proper position
= .1255 x 101
3. Normalize 


already normalized

4.  Convert to Excess-N

= 50 + 1 = 51

5.  Store in floating point format
= 05112550

Converting from Floating Point format to real number
· The following steps provide the method to convert from floating point format to real number format

1. Convert the mantissa sign digit to (+ or -)

2. Convert from Excess-N to sign-and-magnitude

3. Convert to exponential notation format

4. Convert to real number format

Examples

· Assume the SEEMMMMM floating point format

· Convert 05324657 to real number 

1. Convert the sign digit 



=  +

2. Convert from Excess-N to sign-and-magnitude 
= 53 – 50 = 3

3. Convert to exponential notation format

= .24657 x 103
4.  Convert to real number format


= 246.57

· Convert 54810000 to real number 

1. Convert the sign digit 



=  -

2. Convert from Excess-N to sign-and-magnitude

= 48 – 50 = -2

3. Convert to exponential notation format

= .10000 x 10-2
4.  Convert to real number format


= - .001

· Convert 05112550 to real number 

1. Convert the sign digit 



=  +

2. Convert from Excess-N to sign-and-magnitude 
= 51 – 50 = 1

3. Convert to exponential notation format

= .12550 x 101
4.  Convert to real number format


= 1.255



Floating Point Calculations

· Floating point arithmetic is more complex and costly than that of integer arithmetic

· Exponent and mantissa both has to be computed separately

Addition and Subtraction

· Addition/subtraction is done using the following method

1. Align the exponents (the smaller exponent should aligned until it matches the larger exponent)

2. Add/subtract the mantissas

3. Place decimal point in proper position if necessary

4. Store number in the floating point format 

Examples

· Assume the SEEMMMMM floating point format

1. Add 05199520 + 04967850 

1. Align the second number exponent
= 0510067850

2. Add the mantissas


= .99520 + .0067850 = 1.0019850

3. Adjust decimal point

= .10019850 and Exponent = 51 + 1 = 52

4.  Store in floating point format
= 05210020

2. Subtract 05199520 - 04967850 

1. Align the second number exponent
= 0510067850

2. Subtract the mantissas

= .99520 – .0067850 = .9883250

3. Adjust decimal point

already in proper position

4.  Store in floating point format
= 05198833

Multiplication

· Alignment is not necessary when performing multiplication

· Multiplication is done using the following method

1. Multiply the two mantissas

2. Adding the two exponents – N

3. Normalize if necessary 

4. Store number in the floating point format

Examples

· Assume the SEEMMMMM floating point format

· Excess-50

· Base 10 exponent 

· Base 10 mantissa

· Implied decimal point at the beginning of the number

· Multiply 05220000 x 04712500 

1. Multiply the 2 mantissas

= .20000 x .12500 = .02500

2. Compute exponent


= 52 + 47 – 50 = 49

2. Normalize result


= .25000 and adjust Exponent = 49 – 1 = 48

4. Store in floating point format
= 04825000

Division

· Alignment is not necessary when performing division

· Division is done by

1. Divide the two mantissas

2. Subtract the first number exponent – second number exponent + N

3. Place decimal point in proper position 

4. Store number in the floating point format

Examples

· Divide 05275000 ÷ 05025000 

1. Divide the 2 mantissas


= .75000 ÷ .25000 = 3.00000

2. Compute exponent



= 52 – 50 + 50 = 52

2. Place decimal point in proper position
= 0.30000 and adjust Exponent = 52 + 1 = 53

4. Store in floating point format

= 05330000



IEEE 754 Floating Point Standard

· IEEE has developed a standard for both 32 and 64 bits floating point representation

· The standard was targeted to be used in Personal Computer (IBM-type PC and Apple Macintosh) 

· Apple Macintosh also provides its own 80-bit format

· IEEE 754 defines a 32-bits format called single-precision floating point format
· Leftmost bit is the mantissa sign (0 for positive and 1 for negative)

· Followed by 8 bits exponent 

· Followed by 24 bit mantissa (23 bits + implied which is always assumed to be 1)

· Exponent is represented using Excess-127 which gives an exponent range of: 2-126 to 2+127
Exponents 0 (2-127) and 255 (2+128) are reserved for special use

· Implied exponent base is 2

· Fraction point position is to right of the leading mantissa bit

· Special numbers (e.g. 0, ∞, very small none normalized numbers, etc.) are supported

· Supported precession is approximately 7 decimal significant digits

· Allows for approximate range of 10-45 to 10+38
· IEEE 754 defines a 64-bits format called double-precision floating point format
· It works similar to the single-precision format

· 11 bits for exponent and 52 bits for mantissa

· Supported precession is approximately 15 decimal significant digits

· Allows for approximate range of 10-300 to 10+300
Convert Decimal Real Number to IEEE 754 Floating Point Format 

· The following steps provide the method to convert a decimal real number to IEEE 754 Floating Point format:

· Convert the decimal number to binary

· Adjust binary point to proper position 

· Normalize the number

· Convert exponent from sign-and-magnitude to Excess-127

· Convert exponent to binary 

· Store the number in the floating point format

1. Convert 36.510 to single-precision IEEE 754 floating point format

1. Convert to binary



= 100100.1

2. Adjust binary point to proper position

= 1.001001 x 25
3. Normalize




  already normalized

4. Convert exponent to Excess-127

= 127 + 5 = 132

5. Convert exponent to binary


= 10000100

6. Store in floating point format

= 0 10000100 00100100000000000000000 

2. Convert –0.25 to single-precision IEEE 754 floating point format

1. Convert to binary



= .01

2. Adjust binary point to proper position

= 0.1 x 2-1

3. Normalize




= 1.0 x 2-2
4. Convert exponent to Excess-127

= 127 - 2 = 125

5. Convert exponent to binary


= 01111101

6. Convert to floating point format

= 1 01111101 00000000000000000000000 

Convert from IEEE 754 Floating Point Format to real number

· The following steps provide the method to convert IEEE 754 Floating Point to decimal real number:

· Convert exponent from binary to decimal

· Convert from Excess-127 to sign-and-magnitude

· Convert to exponent notation 

· Remove exponent (if possible)

· Convert from binary to decimal real number 

1. Convert 1 01111101 00000000000000000000000 to decimal real number 

1. Convert exponent to decimal 

= 125

2. Convert Excess-127 to sign-and-magnitude
= 125 – 127 = -2

3. Convert to exponent notation 

= - 1.0 x 2-2

4. Remove exponent



= - 0.01

5. Convert to decimal real number

= - 0.25

2. Convert 0 10000001 11001100000000000000000 to decimal real number 

1. Convert exponent to decimal 

= 129

2. Convert Excess to Exponent 

= 129 – 127 = 2

3. Convert to exponent notation

= 1.110011 x 22

4. Remove exponent



= 111.0011

5. Convert to decimal real number

= 7.1875



Packed Decimal Format (BCD)

· Conversion of floating point numbers may loose accuracy when converted to another base (e.g. decimal to binary and visa versa)

· Many applications, especially business application that deals with money, requires full accuracy of the numbers 

· BCD satisfies the full accuracy objective

· BCD in floating point is very similar to the BCD used to represent integer numbers

· Many business-oriented high-level languages (e.g. COBOL) supports the packed decimal format

· Figure 5.8, page 138 shows 128-bits packed decimal format used in IBM 370/390 and VAX computers

· The format allows for 31 decimal digits (1 digit per 4 bits) 

· Least significant 4 bits are used for the sign 1100 for +, 1101 for -)

· The location of the decimal point is not stored and must be maintained by the application program

Examples

· Convert -150.5410 to IBM 370/390 BCD Floating Point format 

· Convert sign to BCD format


= 1101

· Convert digit by digit to BCD format

= 0001 0101 0000 0101 0100

· Pad with zeros to fill the entire storage space
= you need 104 leading zeros 

· Convert to BCD format

= 0000 (… 104 zeros …) 000101010000010101001101



Overflow and Underflow Conditions

· An Overflow occur when the number is too large to be stored 

· An Underflow occur when the number is too small to be stored 

· See Figure 5.2 in page 115 for illustration of overflow and underflow in floating point representation

